Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(21): 210602, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295120

RESUMO

Despite the development of increasingly capable quantum computers, an experimental demonstration of a provable algorithmic quantum speedup employing today's non-fault-tolerant devices has remained elusive. Here, we unequivocally demonstrate such a speedup within the oracular model, quantified in terms of the scaling with the problem size of the time-to-solution metric. We implement the single-shot Bernstein-Vazirani algorithm, which solves the problem of identifying a hidden bitstring that changes after every oracle query, using two different 27-qubit IBM Quantum superconducting processors. The speedup is observed on only one of the two processors when the quantum computation is protected by dynamical decoupling but not without it. The quantum speedup reported here does not rely on any additional assumptions or complexity-theoretic conjectures and solves a bona fide computational problem in the setting of a game with an oracle and a verifier.

2.
Philos Trans A Math Phys Eng Sci ; 381(2241): 20210407, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36463925

RESUMO

We present a new quantum adiabatic theorem that allows one to rigorously bound the adiabatic timescale for a variety of systems, including those described by originally unbounded Hamiltonians that are made finite-dimensional by a cutoff. Our bound is geared towards the qubit approximation of superconducting circuits and presents a sufficient condition for remaining within the [Formula: see text]-dimensional qubit subspace of a circuit model of [Formula: see text] qubits. The novelty of this adiabatic theorem is that, unlike previous rigorous results, it does not contain [Formula: see text] as a factor in the adiabatic timescale, and it allows one to obtain an expression for the adiabatic timescale independent of the cutoff of the infinite-dimensional Hilbert space of the circuit Hamiltonian. As an application, we present an explicit dependence of this timescale on circuit parameters for a superconducting flux qubit and demonstrate that leakage out of the qubit subspace is inevitable as the tunnelling barrier is raised towards the end of a quantum anneal. We also discuss a method of obtaining a [Formula: see text] effective Hamiltonian that best approximates the true dynamics induced by slowly changing circuit control parameters. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

3.
Patterns (N Y) ; 2(6): 100246, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34179840

RESUMO

Recent advances in high-throughput genomic technologies coupled with exponential increases in computer processing and memory have allowed us to interrogate the complex molecular underpinnings of human disease from a genome-wide perspective. While the deluge of genomic information is expected to increase, a bottleneck in conventional high-performance computing is rapidly approaching. Inspired by recent advances in physical quantum processors, we evaluated several unconventional machine-learning (ML) strategies on actual human tumor data, namely "Ising-type" methods, whose objective function is formulated identical to simulated annealing and quantum annealing. We show the efficacy of multiple Ising-type ML algorithms for classification of multi-omics human cancer data from The Cancer Genome Atlas, comparing these classifiers to a variety of standard ML methods. Our results indicate that Ising-type ML offers superior classification performance with smaller training datasets, thus providing compelling empirical evidence for the potential future application of unconventional computing approaches in the biomedical sciences.

4.
Nat Commun ; 10(1): 1571, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952854

RESUMO

Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-diagonal matrix elements in a given basis, are known to pose severe limitations on the efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infamous sign problem. We study the computational complexity associated with 'curing' non-stoquastic Hamiltonians, i.e., transforming them into sign-problem-free ones. We prove that if such transformations are limited to single-qubit Clifford group elements or general single-qubit orthogonal matrices, finding the curing transformation is NP-complete. We discuss the implications of this result.

5.
Phys Rev Lett ; 121(22): 220502, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547654

RESUMO

Quantum computers must be able to function in the presence of decoherence. The simplest strategy for decoherence reduction is dynamical decoupling (DD), which requires no encoding overhead and works by converting quantum gates into decoupling pulses. Here, using the IBM and Rigetti platforms, we demonstrate that the DD method is suitable for implementation in today's relatively noisy and small-scale cloud-based quantum computers. Using DD, we achieve substantial fidelity gains relative to unprotected, free evolution of individual superconducting transmon qubits. To a lesser degree, DD is also capable of protecting entangled two-qubit states. We show that dephasing and spontaneous emission errors are dominant in these systems, and that different DD sequences are capable of mitigating both effects. Unlike previous work demonstrating the use of quantum error correcting codes on the same platforms, we make no use of postselection and hence report unconditional fidelity improvements against natural decoherence.

6.
Nat Commun ; 9(1): 2917, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046092

RESUMO

Closed-system quantum annealing is expected to sometimes fail spectacularly in solving simple problems for which the gap becomes exponentially small in the problem size. Much less is known about whether this gap scaling also impedes open-system quantum annealing. Here, we study the performance of a quantum annealing processor in solving such a problem: a ferromagnetic chain with sectors of alternating coupling strength that is classically trivial but exhibits an exponentially decreasing gap in the sector size. The gap is several orders of magnitude smaller than the device temperature. Contrary to the closed-system expectation, the success probability rises for sufficiently large sector sizes. The success probability is strongly correlated with the number of thermally accessible excited states at the critical point. We demonstrate that this behavior is consistent with a quantum open-system description that is unrelated to thermal relaxation, and is instead dominated by the system's properties at the critical point.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29652405

RESUMO

Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.

8.
Phys Rev Lett ; 118(3): 030504, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157358

RESUMO

We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

9.
Phys Rev Lett ; 116(22): 220501, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314705

RESUMO

Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

11.
Phys Rev Lett ; 115(21): 210402, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636833

RESUMO

We introduce state-independent, nonperturbative Hamiltonian quantum speed limits for population leakage and fidelity loss, for a gapped open system interacting with a reservoir. These results hold in the presence of initial correlations between the system and the reservoir, under the sole assumption that their interaction and its commutator with the reservoir Hamiltonian are norm bounded. The reservoir need not be thermal and can be time dependent. We study the significance of energy mismatch between the system and the local degrees of freedom of the reservoir that directly interact with the system. We demonstrate that, in general, by increasing the system gap we may reduce this energy mismatch, and, consequently, drive the system and the reservoir into resonance; this can accelerate fidelity loss, irrespective of the thermal properties or state of the reservoir. This implies that quantum error suppression strategies based on increasing the gap are not uniformly beneficial. Our speed limits also yield an elementary lower bound on the relaxation time of spin systems.

12.
Phys Rev Lett ; 115(24): 249902, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705663

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.115.210402.

13.
Science ; 345(6195): 420-4, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25061205

RESUMO

The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.

14.
Nat Commun ; 5: 3243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24500027

RESUMO

Quantum information processing offers dramatic speedups, yet is susceptible to decoherence, whereby quantum superpositions decay into mutually exclusive classical alternatives, thus robbing quantum computers of their power. This makes the development of quantum error correction an essential aspect of quantum computing. So far, little is known about protection against decoherence for quantum annealing, a computational paradigm aiming to exploit ground-state quantum dynamics to solve optimization problems more rapidly than is possible classically. Here we develop error correction for quantum annealing and experimentally demonstrate it using antiferromagnetic chains with up to 344 superconducting flux qubits in processors that have recently been shown to physically implement programmable quantum annealing. We demonstrate a substantial improvement over the performance of the processors in the absence of error correction. These results pave the way towards large-scale noise-protected adiabatic quantum optimization devices, although a threshold theorem such as has been established in the circuit model of quantum computing remains elusive.

15.
Phys Rev Lett ; 113(26): 260504, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615294

RESUMO

We consider error suppression schemes in which quantum information is encoded into the ground subspace of a Hamiltonian comprising a sum of commuting terms. Since such Hamiltonians are gapped, they are considered natural candidates for protection of quantum information and topological or adiabatic quantum computation. However, we prove that they cannot be used to this end in the two-local case. By making the favorable assumption that the gap is infinite, we show that single-site perturbations can generate a degeneracy splitting in the ground subspace of this type of Hamiltonian which is of the same order as the magnitude of the perturbation, and is independent of the number of interacting sites and their Hilbert space dimensions, just as in the absence of the protecting Hamiltonian. This splitting results in decoherence of the ground subspace, and we demonstrate that for natural noise models the coherence time is proportional to the inverse of the degeneracy splitting. Our proof involves a new version of the no-hiding theorem which shows that quantum information cannot be approximately hidden in the correlations between two quantum systems. The main reason that two-local commuting Hamiltonians cannot be used for quantum error suppression is that their ground subspaces have only short-range (two-body) entanglement.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24125252

RESUMO

We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that for a specific class of generalized measurements, which include projective measurements, unitality replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.

17.
Nat Commun ; 4: 2067, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23811779

RESUMO

Quantum annealing is a general strategy for solving difficult optimization problems with the aid of quantum adiabatic evolution. Both analytical and numerical evidence suggests that under idealized, closed system conditions, quantum annealing can outperform classical thermalization-based algorithms such as simulated annealing. Current engineered quantum annealing devices have a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. Do they effectively perform classical thermalization when coupled to a decohering thermal environment? Here we present an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization. Our experiment uses groups of eight superconducting flux qubits with programmable spin-spin couplings, embedded on a commercially available chip with >100 functional qubits. This suggests that programmable quantum devices, scalable with current superconducting technology, implement quantum annealing with a surprising robustness against noise and imperfections.

18.
Sci Rep ; 3: 1394, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23462824

RESUMO

Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

19.
Phys Rev Lett ; 108(23): 230506, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003933

RESUMO

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

20.
Phys Rev Lett ; 104(13): 130501, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481868

RESUMO

We present a near-optimal quantum dynamical decoupling scheme that eliminates general decoherence of a qubit to order n using O(n2) pulses, an exponential decrease in pulses over all previous decoupling methods. Numerical simulations of a qubit coupled to a spin bath demonstrate the superior performance of the new pulse sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...